Rapamycin, a potent inhibitor of T-cell function, prevents graft rejection in murine recipients of allogeneic T-cell-depleted donor marrow.
نویسندگان
چکیده
We investigated the ability of the macrolide antifungal agent rapamycin (RAPA) to inhibit the rejection of T-cell-depleted (TCD) donor bone marrow (BM) transplanted into major histocompatibility complex (MHC)-disparate irradiated recipients. RAPA (1.5 mg/kg) was administered for 14 days beginning on the day of transplant. In the present study, we have tested RAPA administration in two types of fully allogeneic BM transplantation (BMT) systems in which host T cells mediate the rejection of TCD BM grafts (DBA/1 transplanted into C57BL/6 and BALB/c transplanted into C57BL/6). In both instances, RAPA administration prevented the rejection of the donor graft, accelerated post-BMT hematopoietic recovery, and did not compromise recipient survival. Sequential post-BMT fluorescence-activated cell sorter analysis of the spleen showed that RAPA administration inhibited host CD4+ and CD8+ T-cell expansion that leads to graft rejection. To further investigate the effect of RAPA on T-cell subpopulations, we used two congenic donor mouse stains with isolated MHC class I (bm1) or class II (bm12) mutations. In these studies, we showed that RAPA administration can inhibit MHC class I-restricted CD8+ or class II-restricted CD4+ T-cell-mediated graft rejection without compromising recipient survival. The RAPA-facilitated alloengraftment is multilineage and durable. We have also shown that RAPA speeds hematopoietic recovery post-BMT. We conclude that RAPA represents a new therapeutic modality for promoting alloengraftment and accelerating hematopoietic recovery.
منابع مشابه
Donor leukocyte infusion from immunized donors increases tumor vaccine efficacy after allogeneic bone marrow transplantation.
Donor T cells play a critical role in mediating both harmful graft-versus-host disease (GVHD) and beneficial graft-versus-tumor effect after allogeneic bone marrow transplantation (BMT). We have recently demonstrated a novel treatment strategy to stimulate specific antitumor activity with preservation of tolerance to host antigens after T cell-depleted allogeneic BMT by vaccination of recipient...
متن کاملEnhanced survival but reduced engraftment in murine recipients of recombinant granulocyte/macrophage colony-stimulating factor following transplantation of T-cell-depleted histoincompatible bone marrow.
In vivo administration of murine recombinant granulocyte/macrophage colony stimulating factor (rGM-CSF) was evaluated for effects on survival and engraftment in an allogeneic murine bone marrow transplantation (BMT) model involving T-cell depletion of donor marrow. The model provides a high incidence of graft failure/rejection. Recipients of continuous subcutaneous infusions of rGM-CSF had a si...
متن کاملLigation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients.
4-1BB is expressed on activated CD4(+) and CD8(+) T cells; its ligand, 4-1BB ligand is expressed on APCs. Despite expression on both T cell subpopulations, 4-1BB has been reported to predominantly affect CD8(+) T cell responses. By quantifying graft-vs-host disease alloresponses in vivo, we demonstrate that both CD4(+) and CD8(+) T cell-mediated alloresponses are regulated by 4-1BB/4-1BB ligand...
متن کاملAnti-third-party veto CTLs overcome rejection of hematopoietic allografts: synergism with rapamycin and BM cell dose.
Several bone marrow cells and lymphocyte subpopulations, known as "veto cells," were shown to induce transplantation tolerance across major histocompatibility antigens. Some of the most potent veto cells are of T-cell origin, and in particular a very strong veto activity was documented for cytotoxic T-lymphocyte (CTL) lines or clones. However, these cells also possess marked graft-versus-host (...
متن کاملTumor cell vaccine elicits potent antitumor immunity after allogeneic T-cell-depleted bone marrow transplantation.
Allogeneic bone marrow transplantation (BMT) is currently restricted to hematological malignancies because of a lack of antitumor activity against solid cancers. We have tested a novel treatment strategy to stimulate specific antitumor activity against a solid tumor after BMT by vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 83 2 شماره
صفحات -
تاریخ انتشار 1994